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Abstract 
 

In this paper, we propose an anomaly detection 
approach that classifies packets into code-type and 
data-type. Our objective is to detect a packet 
containing codes flowing into a network port, which 
normally expects data packets only. The proposed 
approach can detect potentially malicious packets 
such as worms, viruses, and shellcodes. We propose 
a time-efficient algorithm and show the results of our 
initial experiments. 

 
1. Introduction 
 

Intrusion detection systems (IDS) face with 
known attacks and unknown attacks. Many IDS are 
signature-based, which can detect known attacks 
efficiently such as Snort [1] and Bro [2] but cannot 
detect unknown attacks effectively. Anomaly 
detection approaches, on the other hand, can better 
deal with unknown attacks. Anomaly detection 
approaches model normal (expected) behavior of the 
system and anything that largely deviates from the 
normal behavior is considered as anomalous, which 
may arise from attempted attacks. 

Some attacks such as probing a network or 
exploiting vulnerabilities of network protocol can be 
detected by analyzing packet header information or 
traffic analysis. But the attacks exploiting program 
vulnerabilities such as malcodes (worms or viruses) 
may not be handled by just using packet header 
information. Such attacks may be better detected by 
analyzing the packet payload. 

In this paper, we propose an anomaly detection 
approach that classifies the packets into code-type 
and data-type. Our objective is to identify a packet 
containing codes flowing into a network port, which 
normally expects data packets only. For example, a 
web client usually receives html files, documents, or 
proposed approach can detect potentially malicious 
multimedia data such as images and sounds (except 
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for a few occasions like ActiveX programs). The 
code packets (such as worms, viruses, and shellcodes 
that exploit buffer overflow vulnerabilities) and alert 
web users. 

Our scheme analyzes byte frequency distributions 
from a large set of program files (frequency vectors), 
and produces a feature vector that summarizes those 
information. We then calculate frequency vectors 
from a large set of code and data packets. Using the 
frequency vectors (of code / data packets) and the 
feature vector (of program files), we calculate a set 
of Mahalanobis distance (MD) values. The 
Mahalanobis distance values derived from code 
packets are lower than those derived from data 
packets, so we can determine a threshold that 
distinguishes code packets and data packets. 

The rest of paper is organized as follows. Section 
2 presents related work. Section 3 describes the 
proposed approach, the challenges faced by this 
approach, and the augmented approach that deals 
with the problem. Section 4 shows experiment 
results. Section 5 presents conclusions and our future 
work to enhance the proposed approach. 

 
2. Related work 
 

Statistical approach is used by many anomaly 
detection systems such as NIDES [3], SPADE [4], 
ALAD [5], PHAD [6, 7, 8], and NATE [9], but they 
rely on the packet header information rather than 
packet payload. 

MADMID [10], EMERALD [11,12], STAT [13] 
extract and reconstruct information such as bytes 
transferred and session duration. Some approaches 
use payload information but in a very limited way. 
For example, NETAD [14] uses first 48 bytes of 
packet for feature selection. However, since 40 bytes 
are required for TCP and IP headers, it uses at most 8 
bytes of payload. There are approaches that use 
payload information [15, 16, 17, 18], but do not use 
byte frequency distribution. 

Our approach employs n-gram and byte frequency 
distribution, similar to Wang and Stolfo [19, 20]. 
Kruegel et al. [21] also used byte frequency 
distribution, but rather than using full byte frequency  
distribution, they used six ranges (0, 1-3, 4-6, 7-11, 
12-15, and 16-255) of byte distribution. Wang and 
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Stolfo [20] derive multiple models of the normal 
behavior according to each network port and packet 
size. Their approach also needs to adapt to the 
changes in the data stream on each port. In contrast, 
our approach is not port or packet size-specific, and 
is much less sensitive to the changes in the data 
stream on the network. 

 
3. The proposed approach 
 

3.1. Basic scheme 
 

To identify codes in a packet, we initially tried 
decoding the packet to find valid machine 
instructions. However, since every bye pattern maps 
to a valid x86 opcode, it is quite difficult to 
distinguish a valid instruction this way [22]. 
Therefore, we opt for a statistical and data-mining 
approach. 

During the learning phase, our scheme analyzes 
n-byte frequency distributions from a large set of 
program files (frequency vectors). An n-gram [23] is 
the sequence of n adjacent bytes in packets or files. 
A sliding window with width n is passed over to 
whole payload or file and occurrence of each n-gram 
is counted (Figure 1 shows examples of 1-gram 
frequency vectors). From frequency vectors we 
calculate a feature vector (mean and standard 
deviation of each n-byte pattern frequency). We use 
program files in generating feature vectors in order 
to capture the generic program pattern. 

We then calculate frequency vectors from a large 
set of code and data packets. Using the frequency 
vectors (of code / data packets) and the feature vector 
(of program files), we calculate a set of Mahalanobis 
distance values. The Mahalanobis distance values 
derived from code packets are lower than those 
derived from data packets, so we can determine a 

threshold that distinguishes code packets and data 
packets. 

During the detection phase, each incoming packet 
is scanned to compute a frequency vector. Using the 
frequency vector and the feature vector we compute 
the Mahalanobis distance. If the MD value is lower 
than the threshold value, then it is considered a code 
packet. 

In this paper, we initially used “artificial packets” 
by dividing program and data files into 1500-byte 
stream (since usual MTU is 1500). Section 4 shows 
experiment results using real packets. We also used 
the simplified Mahalanobis distance by Wang and 
Stolfo [20], which is 
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Where y is a mean value, σ is a standard 
deviation (from the feature vector), and x  is a n-
byte pattern frequency of the incoming packet. 

 
3.2. 3-gram and threshold value 
 

An instruction consists of multiple bytes (even an 
opcode alone may consists of multiple bytes), so byte 
sequence information would be significant in 
identifying codes in a packet. Therefore, higher order 
n-gram would be beneficial. 

In this paper, we tried increasing the order until 
we can clearly distinguish code and data packets. 
Figure 2 shows that using 3-gram we can distinguish 
code and data with sufficient accuracy (10,000 
packets are used for each type). Table 1 show the 
optimum threshold value for each type as well as the 
optimum threshold for all types. 
 

  
Program 1   Program 2  AVI         GIF              RM 

  XML         PDF              TXT        MP3            TIF 
Figure 1. Frequency vectors of program and data files. 
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1-gram MD vectors 

 
Program         WMV            PDF            JPG 
 

 Threshold line 
 
2-gram MD vectors 

 
Program         WMV            PDF            JPG 

3-gram MD vectors 

 
Program         WMV            PDF            JPG 

Figure 2: MD vectors of code and multimedia types of packets, using 1, 2, and 3-gram. 
 

  Right Hits False Negatives False Positives 

  

Optimum 
threshold 
MD value 

# of 
program 
packets 

Prog 
(%) 

# of data 
packets 

Data 
(%) 

# of 
program 
packets 

Prog 
(%) 

# of 
data 
packets 

Data 
(%) 

JPG 28111620.0 9950 99.5 9889 98.89 49 0.49 111 1.11 
MP3 26239000.0 9747 97.47 9960 99.6 252 2.52 40 0.4 
PDF 21689270.0 9657 96.57 9603 96.03 342 3.42 397 3.97 
WM
V 27684800.0 9885 98.85 9934 99.34 114 1.14 66 0.66 
All 
Files 21689270.0 38632 96.58 39518 98.80 1368 3.42 482 1.20 

Table 1. Packet classification statistics from code and data packets. 
  
3.3. Problem in the basic scheme 
  

While 3-gram was sufficient to distinguish code 
packets from multimedia packets, the basic scheme 
cannot distinguish code packets from text-type 
packets even if we increase n. As shown in Figure 3, 
MD values derived from text-type packets are close 
or lower than those derived from code packets. 

 
We conjecture that this problem is due to the 

difference in the number of unique n-byte patterns. 
Table 2 shows that while program and multimedia 
files have large number of unique 3-byte patterns, 
text-type files have substantially less number of 
unique 3-byte patterns. 
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1-gram MD vectors 

 
Program       HTML           TXT          XLS  

2-gram MD vectors 

 
Program       HTML           TXT          XLS  

3-gram MD vectors 

 
 Program       HTML           TXT          XLS  

Figure 3. MD vectors of code and text-types of packets, using 1, 2, and 3-gram. 
 
 
Files 
Classification File Type 

Number of 3-gram 
permutations in files (A) 

B (%) = (A / total number of 3-
gram permutations ×  100) 

XML 13926 0.08 
HTML 33845 0.20 
TXT 54427 0.32 
XLS 692463 4.13 

Text-type 
Files 

DOC 4654411 27.74 
TIF 6701610 39.94 
PPS 7338333 43.74 
PDF 9874294 58.86 
JPG 16191234 96.51 
MP3 16425993 97.91 
WMV 16661987 99.31 
RM 16774686 99.98 

Multimedia 
Files 

AVI 16777216 100.00 
Program File Program 16654060 99.26 
Table 2. The number of unique 3-byte patterns in various types of files. 
 

3.4. Dual threshold testing 
 

The problem of the basic scheme is that it can 
only distinguish multimedia packets vs. code or text-

type packets. To distinguish code vs. text-type 
packets, our solution in this paper is to use another 
threshold. Specifically, we derive a feature vector 
from text-type files, and derive a set of Mahalanobis 
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distance values using this feature vector and the 
frequency vectors (of code / data packets). From this 
Mahalanobis distance values we derive the second 
threshold that distinguish codes and text-type data. 

The detection algorithm is now as follows. We 
first calculate an MD value of the incoming packet 
using the feature vector of program files. If the MD 
value is greater than the first threshold, then it is 
considered a multimedia packet. Otherwise, we 
calculate another MD value using the feature vector 

of text-type files. If the MD value is greater than the 
second threshold, then it is considered a code packet. 
Figure 4 shows a flowchart of our scheme. 

Figure 5 show that using 3-gram we can 
distinguish code vs. text-type packet with adequate 
accuracy. However, as Table 3 shows, the false 
negative rate is much higher than that of the basic 
scheme. In Section 5, we discuss possible solutions 
to improve the accuracy as our future work. 

 

 
Figure 4. Flow chart of the proposed scheme, augmented with dual threshold testing. 
 
3-gram MD vectors 

 
Program  DOC   XLS   LOG  

  
Program  HTML   TXT   XML 

Figure 5. MD vectors of code and text-types of packets, using the feature vector of text-type files.
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  Right Hits False Negatives False Positives  

  

 
Threshold 
MD Value Program 

Prog 
(%) 

Non 
Prog 

Non 
Prog(%) Program 

Prog 
(%) 

Non 
Prog 

Non 
Prog(%) 

TXT 394462.6 98123 98.123 99780 99.78 1877 1.877 220 0.22 
XML 3655786.00 91195 91.195 99280 99.28 8805 8.805 720 0.72 
HTM
L 5504284.00 91344 91.344 97990 97.99 8656 8.656 2010 2.01 
LOG 4198904.00 90487 90.487 99855 99.855 9513 9.513 145 0.145 
XLS 6924106.00 85608 85.608 96290 96.29 14392 14.392 3710 3.71 
DOC 6708201.00 86456 86.456 86770 86.77 13544 13.544 13230 13.23 
All 
Files 6521949.00 51838 86.39714 58140 96.9 8162 13.6029 1860 3.1 

Table 3. Packet classification statistics from code and data packets using the feature vector of text-type files. 
 
3.5. Time overhead of higher-order n-gram 
 

As we increase the order of n-gram (up to a 
certain point), the result will be more accurate. 
However, the time overhead may also increase if we 
are not careful. We use n-dimensional array to store 
n-byte patterns. Although memory space will 
increase exponentially as we increase n, it may not 
be critical if we use 64-bit architecture. However, a 
naïve algorithm that iterates through the array will 
increase the run-time exponentially as well, which is 
critical because the proposed scheme operates on 
every packet and therefore needs to be fast. 

By iterating through the packet rather than 
iterating through the array, we can keep the run time 
independent from the size of n. That is, the run-time 
depends on the packet size, not the total number of n-
gram permutations. A naïve algorithm and a fast 
algorithm are shown below. 

 
3.5.1 Naïve Algorithm 
 
Pre-computed Values for Mahalanobis Distance 
calculation:  

y   Mean values taken from normal program 
files  

σ   Standard deviation values taken from 
normal 
        program files  
 

During Mahalanobis distance calculation: 
a. Calculate the byte count of 3-gram of unknown 

packet 
PACKET_SIZE  length(packet) 
for j  0 to PACKET_SIZE downto 2 

do count(3-gram byte pattern on jth position) 
 

 

b. Calculate the byte sequence frequency and 
Mahalanobis distance 

 
for i  0 to 255 
      for j  0 to 255      main cause of delay  
           for k  0 to 255 

, , , , , ,(| | / )i j k i j k i j kMD MD x y← + − σ  

MD  Mahalanobis Distance value  
x  is a n-byte pattern frequency of the incoming 

packet. 
 

3.5.2 Fast Algorithm 
 
Pre-computed Values for Mahalanobis Distance 
calculation: 

y   Mean values taken from normal program 
files  

σ   Standard deviation values taken from 
normal  

program files  

T  Total sum of the ratio of mean ( y ) and 

standard deviation ( σ ) taken from normal files  
 
During Mahalanobis distance calculation: 

 
a. Calculate the byte count of 3-gram of unknown 

packet 
PACKET_SIZE  length(packet) 
for j  0 to PACKET_SIZE downto 2 

do count(3-gram byte pattern on jth position) 

103310331033



 
         (a) Program               (a) Multimedia packets       (b) Program                 (b) Text-type packets 
Figure 6. Part (a) and (b) show the dual threshold testing on real packets of program, multimedia, and text-type 
packets. 
 

Part (a) Part (b) 
False Positives (%) False Negatives (%) False Positives (%) False Negatives (%) 
2.37 5.97 5.056 18.24 

Table 4. False positive and negative rates. 
 

b. Calculate the byte sequence frequency and 
Mahalanobis distance 

 
Initialize MD  0 E 0 
for j  0 to PACKET_SIZE downto 2   less 

iteration 

(| | / )j j jMD MD x y← + − σ  

( / )j jE E y← + σ  

End for 
MD  MD + T – E  

4. Experiments with real packets 
 

Experiments were done on real packets by 
extracting payloads from the captured packets. We 
used an FTP server to transfer program and data 
files. During the file transfer, packets were captured 
using tcpdump [24] . Tcptrace [25] is used to process 
packets captured in tcpdump files. The multimedia 
types we used are are PDF, AVI, RM, WMV, JPG, 
MP3, TIFF, GIF, and the text-types we used are 
HTML, XLS, DOC, TXT, XML. 

Figure 6 shows the results, and Table 4 shows the 
false positive and negative rates. We used the same 
feature vectors threshold values used in Table 1 and 
4 to obtain the results. The results are somewhat 
different from our initial observation using artificial 
packets. The false positive / negatives are generally 
higher than before, which is partly because that the 
threshold value is not calibrated for the real packets. 
 
5. Conclusions and future work 
 

We proposed an anomaly detection approach that 
uses n-gram and Mahalanobis distance to identify 
packets containing potentially malicious codes. Our 
scheme seems effective in distinguishing code 
packets from multimedia packets, but is less 
effective in distinguishing code packets from text-

type packets. We analyzed why text-type contents 
are difficult to distinguish, and suggested the 
difference in the number of unique n-byte patterns as 
a possible cause. We showed the dual threshold 
testing approach as our initial attempt to increase the 
accuracy. 

For our scheme to be practical, we need to reduce 
the false positive / negative level further. We plan to 
pursue two directions as our future work. First is to 
use a multivariate model that includes the 
Mahalanobis distance metric and the number of 
unique n-byte patterns. Second is to modify our basic 
scheme such that only a significant subset of unique 
n-byte patterns is considered in calculating MD 
values. The rationale is that insignificant n-byte 
patterns might act as noises in computing MD 
values. 
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