
Detection of malcodes by packet classification

Irfan Ahmed, Kyung-suk Lhee
Digital Vaccine and Internet Immune System Lab,

Graduate School of Information and Communication, Ajou University, Korea
{irfan, klhee} @ajou.ac.kr

Abstract

In this paper, we propose an anomaly detection
approach that classifies packets into code-type and
data-type. Our objective is to detect a packet
containing codes flowing into a network port, which
normally expects data packets only. The proposed
approach can detect potentially malicious packets
such as worms, viruses, and shellcodes. We propose
a time-efficient algorithm and show the results of our
initial experiments.

1. Introduction

Intrusion detection systems (IDS) face with
known attacks and unknown attacks. Many IDS are
signature-based, which can detect known attacks
efficiently such as Snort [1] and Bro [2] but cannot
detect unknown attacks effectively. Anomaly
detection approaches, on the other hand, can better
deal with unknown attacks. Anomaly detection
approaches model normal (expected) behavior of the
system and anything that largely deviates from the
normal behavior is considered as anomalous, which
may arise from attempted attacks.

Some attacks such as probing a network or
exploiting vulnerabilities of network protocol can be
detected by analyzing packet header information or
traffic analysis. But the attacks exploiting program
vulnerabilities such as malcodes (worms or viruses)
may not be handled by just using packet header
information. Such attacks may be better detected by
analyzing the packet payload.

In this paper, we propose an anomaly detection
approach that classifies the packets into code-type
and data-type. Our objective is to identify a packet
containing codes flowing into a network port, which
normally expects data packets only. For example, a
web client usually receives html files, documents, or
proposed approach can detect potentially malicious
multimedia data such as images and sounds (except

*This research is supported by the Ubiquitous Computing and
Network (UCN) Project, the Ministry of Information and
Communication (MIC) 21st Century Frontier R&D Program in
Korea.

for a few occasions like ActiveX programs). The
code packets (such as worms, viruses, and shellcodes
that exploit buffer overflow vulnerabilities) and alert
web users.

Our scheme analyzes byte frequency distributions
from a large set of program files (frequency vectors),
and produces a feature vector that summarizes those
information. We then calculate frequency vectors
from a large set of code and data packets. Using the
frequency vectors (of code / data packets) and the
feature vector (of program files), we calculate a set
of Mahalanobis distance (MD) values. The
Mahalanobis distance values derived from code
packets are lower than those derived from data
packets, so we can determine a threshold that
distinguishes code packets and data packets.

The rest of paper is organized as follows. Section
2 presents related work. Section 3 describes the
proposed approach, the challenges faced by this
approach, and the augmented approach that deals
with the problem. Section 4 shows experiment
results. Section 5 presents conclusions and our future
work to enhance the proposed approach.

2. Related work

Statistical approach is used by many anomaly
detection systems such as NIDES [3], SPADE [4],
ALAD [5], PHAD [6, 7, 8], and NATE [9], but they
rely on the packet header information rather than
packet payload.

MADMID [10], EMERALD [11,12], STAT [13]
extract and reconstruct information such as bytes
transferred and session duration. Some approaches
use payload information but in a very limited way.
For example, NETAD [14] uses first 48 bytes of
packet for feature selection. However, since 40 bytes
are required for TCP and IP headers, it uses at most 8
bytes of payload. There are approaches that use
payload information [15, 16, 17, 18], but do not use
byte frequency distribution.

Our approach employs n-gram and byte frequency
distribution, similar to Wang and Stolfo [19, 20].
Kruegel et al. [21] also used byte frequency
distribution, but rather than using full byte frequency
distribution, they used six ranges (0, 1-3, 4-6, 7-11,
12-15, and 16-255) of byte distribution. Wang and

The Third International Conference on Availability, Reliability and Security

0-7695-3102-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ARES.2008.100

1028

The Third International Conference on Availability, Reliability and Security

0-7695-3102-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ARES.2008.100

1028

The Third International Conference on Availability, Reliability and Security

0-7695-3102-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ARES.2008.100

1028

Stolfo [20] derive multiple models of the normal
behavior according to each network port and packet
size. Their approach also needs to adapt to the
changes in the data stream on each port. In contrast,
our approach is not port or packet size-specific, and
is much less sensitive to the changes in the data
stream on the network.

3. The proposed approach

3.1. Basic scheme

To identify codes in a packet, we initially tried
decoding the packet to find valid machine
instructions. However, since every bye pattern maps
to a valid x86 opcode, it is quite difficult to
distinguish a valid instruction this way [22].
Therefore, we opt for a statistical and data-mining
approach.

During the learning phase, our scheme analyzes
n-byte frequency distributions from a large set of
program files (frequency vectors). An n-gram [23] is
the sequence of n adjacent bytes in packets or files.
A sliding window with width n is passed over to
whole payload or file and occurrence of each n-gram
is counted (Figure 1 shows examples of 1-gram
frequency vectors). From frequency vectors we
calculate a feature vector (mean and standard
deviation of each n-byte pattern frequency). We use
program files in generating feature vectors in order
to capture the generic program pattern.

We then calculate frequency vectors from a large
set of code and data packets. Using the frequency
vectors (of code / data packets) and the feature vector
(of program files), we calculate a set of Mahalanobis
distance values. The Mahalanobis distance values
derived from code packets are lower than those
derived from data packets, so we can determine a

threshold that distinguishes code packets and data
packets.

During the detection phase, each incoming packet
is scanned to compute a frequency vector. Using the
frequency vector and the feature vector we compute
the Mahalanobis distance. If the MD value is lower
than the threshold value, then it is considered a code
packet.

In this paper, we initially used “artificial packets”
by dividing program and data files into 1500-byte
stream (since usual MTU is 1500). Section 4 shows
experiment results using real packets. We also used
the simplified Mahalanobis distance by Wang and
Stolfo [20], which is

1

0
(,) (| | /)

n

i i i
i

d x y x y
−

=
= − σ∑

,

Where y is a mean value, σ is a standard
deviation (from the feature vector), and x is a n-
byte pattern frequency of the incoming packet.

3.2. 3-gram and threshold value

An instruction consists of multiple bytes (even an
opcode alone may consists of multiple bytes), so byte
sequence information would be significant in
identifying codes in a packet. Therefore, higher order
n-gram would be beneficial.

In this paper, we tried increasing the order until
we can clearly distinguish code and data packets.
Figure 2 shows that using 3-gram we can distinguish
code and data with sufficient accuracy (10,000
packets are used for each type). Table 1 show the
optimum threshold value for each type as well as the
optimum threshold for all types.

Program 1 Program 2 AVI GIF RM

 XML PDF TXT MP3 TIF
Figure 1. Frequency vectors of program and data files.

102910291029

1-gram MD vectors

Program WMV PDF JPG

 Threshold line

2-gram MD vectors

Program WMV PDF JPG

3-gram MD vectors

Program WMV PDF JPG

Figure 2: MD vectors of code and multimedia types of packets, using 1, 2, and 3-gram.

 Right Hits False Negatives False Positives

Optimum
threshold
MD value

of
program
packets

Prog
(%)

of data
packets

Data
(%)

of
program
packets

Prog
(%)

of
data
packets

Data
(%)

JPG 28111620.0 9950 99.5 9889 98.89 49 0.49 111 1.11
MP3 26239000.0 9747 97.47 9960 99.6 252 2.52 40 0.4
PDF 21689270.0 9657 96.57 9603 96.03 342 3.42 397 3.97
WM
V 27684800.0 9885 98.85 9934 99.34 114 1.14 66 0.66
All
Files 21689270.0 38632 96.58 39518 98.80 1368 3.42 482 1.20

Table 1. Packet classification statistics from code and data packets.

3.3. Problem in the basic scheme

While 3-gram was sufficient to distinguish code
packets from multimedia packets, the basic scheme
cannot distinguish code packets from text-type
packets even if we increase n. As shown in Figure 3,
MD values derived from text-type packets are close
or lower than those derived from code packets.

We conjecture that this problem is due to the

difference in the number of unique n-byte patterns.
Table 2 shows that while program and multimedia
files have large number of unique 3-byte patterns,
text-type files have substantially less number of
unique 3-byte patterns.

103010301030

1-gram MD vectors

Program HTML TXT XLS

2-gram MD vectors

Program HTML TXT XLS

3-gram MD vectors

 Program HTML TXT XLS

Figure 3. MD vectors of code and text-types of packets, using 1, 2, and 3-gram.

Files
Classification File Type

Number of 3-gram
permutations in files (A)

B (%) = (A / total number of 3-
gram permutations × 100)

XML 13926 0.08
HTML 33845 0.20
TXT 54427 0.32
XLS 692463 4.13

Text-type
Files

DOC 4654411 27.74
TIF 6701610 39.94
PPS 7338333 43.74
PDF 9874294 58.86
JPG 16191234 96.51
MP3 16425993 97.91
WMV 16661987 99.31
RM 16774686 99.98

Multimedia
Files

AVI 16777216 100.00
Program File Program 16654060 99.26
Table 2. The number of unique 3-byte patterns in various types of files.

3.4. Dual threshold testing

The problem of the basic scheme is that it can
only distinguish multimedia packets vs. code or text-

type packets. To distinguish code vs. text-type
packets, our solution in this paper is to use another
threshold. Specifically, we derive a feature vector
from text-type files, and derive a set of Mahalanobis

103110311031

distance values using this feature vector and the
frequency vectors (of code / data packets). From this
Mahalanobis distance values we derive the second
threshold that distinguish codes and text-type data.

The detection algorithm is now as follows. We
first calculate an MD value of the incoming packet
using the feature vector of program files. If the MD
value is greater than the first threshold, then it is
considered a multimedia packet. Otherwise, we
calculate another MD value using the feature vector

of text-type files. If the MD value is greater than the
second threshold, then it is considered a code packet.
Figure 4 shows a flowchart of our scheme.

Figure 5 show that using 3-gram we can
distinguish code vs. text-type packet with adequate
accuracy. However, as Table 3 shows, the false
negative rate is much higher than that of the basic
scheme. In Section 5, we discuss possible solutions
to improve the accuracy as our future work.

Figure 4. Flow chart of the proposed scheme, augmented with dual threshold testing.

3-gram MD vectors

Program DOC XLS LOG

Program HTML TXT XML

Figure 5. MD vectors of code and text-types of packets, using the feature vector of text-type files.

103210321032

 Right Hits False Negatives False Positives

Threshold
MD Value Program

Prog
(%)

Non
Prog

Non
Prog(%) Program

Prog
(%)

Non
Prog

Non
Prog(%)

TXT 394462.6 98123 98.123 99780 99.78 1877 1.877 220 0.22
XML 3655786.00 91195 91.195 99280 99.28 8805 8.805 720 0.72
HTM
L 5504284.00 91344 91.344 97990 97.99 8656 8.656 2010 2.01
LOG 4198904.00 90487 90.487 99855 99.855 9513 9.513 145 0.145
XLS 6924106.00 85608 85.608 96290 96.29 14392 14.392 3710 3.71
DOC 6708201.00 86456 86.456 86770 86.77 13544 13.544 13230 13.23
All
Files 6521949.00 51838 86.39714 58140 96.9 8162 13.6029 1860 3.1

Table 3. Packet classification statistics from code and data packets using the feature vector of text-type files.

3.5. Time overhead of higher-order n-gram

As we increase the order of n-gram (up to a
certain point), the result will be more accurate.
However, the time overhead may also increase if we
are not careful. We use n-dimensional array to store
n-byte patterns. Although memory space will
increase exponentially as we increase n, it may not
be critical if we use 64-bit architecture. However, a
naïve algorithm that iterates through the array will
increase the run-time exponentially as well, which is
critical because the proposed scheme operates on
every packet and therefore needs to be fast.

By iterating through the packet rather than
iterating through the array, we can keep the run time
independent from the size of n. That is, the run-time
depends on the packet size, not the total number of n-
gram permutations. A naïve algorithm and a fast
algorithm are shown below.

3.5.1 Naïve Algorithm

Pre-computed Values for Mahalanobis Distance
calculation:

y Mean values taken from normal program
files

σ Standard deviation values taken from
normal
 program files

During Mahalanobis distance calculation:
a. Calculate the byte count of 3-gram of unknown

packet
PACKET_SIZE length(packet)
for j 0 to PACKET_SIZE downto 2

do count(3-gram byte pattern on jth position)

b. Calculate the byte sequence frequency and
Mahalanobis distance

for i 0 to 255
 for j 0 to 255 main cause of delay
 for k 0 to 255

, , , , , ,(| | /)i j k i j k i j kMD MD x y← + − σ

MD Mahalanobis Distance value
x is a n-byte pattern frequency of the incoming

packet.

3.5.2 Fast Algorithm

Pre-computed Values for Mahalanobis Distance
calculation:

y Mean values taken from normal program
files

σ Standard deviation values taken from
normal

program files

T Total sum of the ratio of mean (y) and

standard deviation (σ) taken from normal files

During Mahalanobis distance calculation:

a. Calculate the byte count of 3-gram of unknown

packet
PACKET_SIZE length(packet)
for j 0 to PACKET_SIZE downto 2

do count(3-gram byte pattern on jth position)

103310331033

 (a) Program (a) Multimedia packets (b) Program (b) Text-type packets
Figure 6. Part (a) and (b) show the dual threshold testing on real packets of program, multimedia, and text-type
packets.

Part (a) Part (b)
False Positives (%) False Negatives (%) False Positives (%) False Negatives (%)
2.37 5.97 5.056 18.24

Table 4. False positive and negative rates.

b. Calculate the byte sequence frequency and
Mahalanobis distance

Initialize MD 0 E 0
for j 0 to PACKET_SIZE downto 2 less

iteration

(| | /)j j jMD MD x y← + − σ

(/)j jE E y← + σ

End for
MD MD + T – E

4. Experiments with real packets

Experiments were done on real packets by
extracting payloads from the captured packets. We
used an FTP server to transfer program and data
files. During the file transfer, packets were captured
using tcpdump [24] . Tcptrace [25] is used to process
packets captured in tcpdump files. The multimedia
types we used are are PDF, AVI, RM, WMV, JPG,
MP3, TIFF, GIF, and the text-types we used are
HTML, XLS, DOC, TXT, XML.

Figure 6 shows the results, and Table 4 shows the
false positive and negative rates. We used the same
feature vectors threshold values used in Table 1 and
4 to obtain the results. The results are somewhat
different from our initial observation using artificial
packets. The false positive / negatives are generally
higher than before, which is partly because that the
threshold value is not calibrated for the real packets.

5. Conclusions and future work

We proposed an anomaly detection approach that
uses n-gram and Mahalanobis distance to identify
packets containing potentially malicious codes. Our
scheme seems effective in distinguishing code
packets from multimedia packets, but is less
effective in distinguishing code packets from text-

type packets. We analyzed why text-type contents
are difficult to distinguish, and suggested the
difference in the number of unique n-byte patterns as
a possible cause. We showed the dual threshold
testing approach as our initial attempt to increase the
accuracy.

For our scheme to be practical, we need to reduce
the false positive / negative level further. We plan to
pursue two directions as our future work. First is to
use a multivariate model that includes the
Mahalanobis distance metric and the number of
unique n-byte patterns. Second is to modify our basic
scheme such that only a significant subset of unique
n-byte patterns is considered in calculating MD
values. The rationale is that insignificant n-byte
patterns might act as noises in computing MD
values.

6. References

[1] Jack Koziol, “Intrusion Detection with Snort”, SAMS,
2nd Edition of Book, May 2003.

[2] Vern Paxson, “Bro: A System for Detecting Network
Intruders in Real-Time”, In proceedings of 7th USENIX
Security Symposium, San Antonio, Texas, 1998.

[3] Harold S. Javitz, Alfonso Valdes, “The NIDES
statistical component: Description and Justification”
Technical report, SRI International, Computer Science
Laboratory, 1993.

[4] J. Hoagland, “SPADE”, Silicon Defense,
http://www.silicondefense.com/software/spice, 2000.

[5] Matthew V. Mahoney, Philip K. Chan, “Learning
Nonstationary Models of Normal Network Traffic for
Detecting Novel Attacks”, In proceedings of SIGKDD,
2002, pp. 376-385.

[6] Matthew V. Mahoney, Philip K. Chan, “PHAD: Packet
Header Anomaly Detection for Identifying Hostile
Network Traffic”, Technical report, Florida Institute of
Technology CS-2001-4, April 2001

103410341034

[7] J. Bhawnani, “Design and Implementation of an
Anomaly-Based Intrusion Detection System using
Statistical Analysis of Network Traffic”, Master’s Thesis,
State Univeristy of New York at Binghamton, May 2003.

[8] Victor A. Skormin, Douglas H. Summerville, James S.
Moronski, James L. Sidoran “Application of Genetic
Optimization and Statistical Analysis for Detecting Attacks
in a Computer Network”, In proceedings of the real-time
Intrusion Detection NATO Symposuim, Lisbon, Portugal,
May 2002, pp.27-29.

[9] Carol Taylor, Jim Alves-Foss, “NATE – Network
Analysis of Anomalous Traffic Events, A Low-Cost
approach”, New Security Paradigms Workshop, 2001, pp.
89-96

[10] Matthew V. Mahoney, Philip K. Chan, “An Analysis
of the 1999 DARPA/Lincoln Laboratory Evaluation Data
for Network Anomaly Detection”, RAID 2003, 2003, pp.
220-237.

[11] Phillip A. Porras, Peter G. Neumann, “EMERALD:
Event Monitoring Enabled Responses to Anomalous Live
Disturbances”, National Information Systems Security
Conference, 1997.

[12] Peter G. Neumann, Phillip A. Porras, “Experience
with EMERALD to Date,” In proceedings of the 1st
USENIX Workshop on Intrusion Detection and Network
Monitoring, Santa Clara, CA, April 11-12,1999, pp. 73-80

[13] Matthew V. Mahoney, Philip K. Chan, “Learning
Models of Network Traffic for Detecting Novel Attacks”,
Florida Tech, Technical report 2002-08.

[14] Matthew V. Mahoney, “Network Traffic Anomaly
Detection Based on Packet Bytes,” In Proceedings of 18th
ACM Symposium of Applied Computing, 2003, pp. 346-
350.

 [15] Thomas Toth, Christopher Kruegel, “Accurate Buffer
Overflow Detection via Abstract Payload Execution,” In
5th Symposium on Recent Advances in Intrusion
Detection (RAID), LNCS, Springer Verlag, Switzerland,
October 2002, pp. 274-91.

[16] Janak J. Parekh, Ke Wang, Salvatore J. Stolfo,
“Privacy-Preserving Payload-Based Correlation for
Accurate Malicious Traffic Detection”, In proceedings of
Sigcomm, 2006, pp. 99-106.

[17] Douglas H. Summerville, Nnamdi Nwanze, Victor A.
Skormin, “Anomalous Packet Identification for Network
Intrusion Detection”, In workshop of Information
Assurance United States Military Academy, West Point,
NY, June 2004, pp. 60-67

[18] Nnamdi Nwanze, Douglas H. Summerville, Victor A.
Skormin, “Real-Time Identification of Anomalous Packet
Payloads for Network Intrusion Detection”, In workshop
of Information Assurance United States Military Academy,
West Point, NY, June 2005, pp. 448-449

[19] Ke Wang, Janak J. Parekh, Salvatore J. Stolfo,
“Anagram: A Content Anomaly Detector Resistant to
Mimicry Attack”, RAID 2006, LNCS , pp. 226 - 248.

 [20] Ke Wang, Salvatore J. Stolfo, “Anomalous Payload-
based Network Intrusion Detection”, RAID 2004, pp. 203-
222

[21] Christopher Kruegel, Thomas Toth, Engin Kirda,
“Service Specific Anomaly Detection for Network
Intrusion Detection”, In Symposium on Applied
Computing (SAC), Spain, March 2002, pp. 201-208

[22] Christopher Kruegel, Engin Kirda, Darren Mutz,
William Robertson, Giovanni Vigna, “Polymorphic Worm
Detection Using Structural Information of Executables”, In
RAID 2005, 207-226

[23] Marc Damashek, “Gauging similarity with n-grams:
language independent categorization of text”, Science
267(5119), 1995, pp. 843-848.

[24] http://www.tcpdump.org

[25]http://www.tcptrace.org

103510351035

